Question Expected Answers				Marks	Additional Guidance
1	(a)		method 1: fermentation of sugars or carbohydrates OR reaction with yeast with sugar or carbohydrates \checkmark $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \checkmark$ method 2: hydration of ethene OR reaction of ethene with water OR reaction of steam with ethene \checkmark $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$	4	ALLOW sugar from equation ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ in equation OR $\mathrm{H}_{2} \mathrm{O}$ over the arrow ALLOW correct multiples IGNORE state symbols
	(b)	(i)		2	If name and formula given both need to be correct ALLOW propanone OR acetone IGNORE propone NOT incorrect named compound ALLOW $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ ALLOW O instead of [O] ALLOW correct multiples IGNORE state symbols
		(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR propanoic acid Any number or range of numbers between 1750-1640 (cm^{-1}) for $\mathrm{C}=\mathrm{O} \checkmark$ Any number or range of numbers between 2500-3300 (cm^{-1}) for $\mathrm{O}-\mathrm{H} \checkmark$	3	ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to $\mathrm{C}-\mathrm{O}$ bond
	(c)	(i)	2-methylpropan-2-ol \checkmark	1	ALLOW methylpropan-2-ol OR tertiarybutanol

Question		Expected Answers	Marks	Additional Guidance
	(ii)	ester \checkmark	1	
	(iii)	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \text { OR } \mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ OR ester group shown rest of molecule \checkmark	2	ALLOW skeletal formula OR displayed formula ALLOW ester linkage even if rest of structure is wrong
		Total	13	

	estio	Expected Answers	Marks	Additional Guidance
2	(a)	Structural isomer compounds with the same molecular formula \checkmark but with different structural formulae Stereoisomer compounds with the same structural formula \checkmark but with different arrangements in space Evidence of using M_{r} of 70 to calculate molecular formula of $\mathrm{C}_{5} \mathrm{H}_{10} \checkmark$ F and G are Correct identification of the E and Z isomers H is E/Z happens because double bonds restricts rotation \checkmark different groups on each carbon of the double bond \checkmark	11	ALLOW same molecular formula \checkmark but different structures \checkmark Second marking point is DEPENDENT on first mark ALLOW compounds with the same structure Second marking point is DEPENDENT on first mark This is the QWC mark IGNORE wrong names of \mathbf{F}, \mathbf{G} and \mathbf{H} ALLOW structural or displayed formulae for \mathbf{F}, \mathbf{G} and \mathbf{H} e.g. H is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$ ALLOW identification using trans and cis and ALLOW this marking point as identification of another example of identifying E / Z or cis and trans if not done for F and G ALLOW one mark if no structures drawn but correct names given for \mathbf{F}, \mathbf{G} and \mathbf{H} i.e E-pent-2-ene, Z-pent-2ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks

Question	Expected Answers	Marks	Additional Guidance
(b)	from IR absorption, \mathbf{J} contains $\mathbf{O - H}$ OR from IR \mathbf{J} is an alcohol \checkmark $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{70.59}{12.0}: \frac{13.72}{1.0}: \frac{15.69}{16.0}$ OR $5.8825: 13.72: 0.9806 \checkmark$	8	This is a QWC mark
	empirical formula $=\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ (from mass spectrum), $M_{r}=102 \checkmark$		ALLOW two marks for correct empirical formula with no working out
	evidence that it has been shown that the empirical formula is the molecular formulae e.g. M_{r} of $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}=102$ so empirical formula is molecular formula \checkmark		This is a QWC mark
			ALLOW structural or displayed formulae IGNORE incorrect names
			ALLOW one minor slip in drawing structures e.g. one missing hydrogen but ALLOW ecf for bigger slips such as showing just sticks and no hydrogen atoms ALLOW bond to H in OH
			ALLOW one mark for three isomers of $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$ whether branched or unbranched as a catch mark if no other mark has been awarded for the structures
	One mark for each correct structure		If more than three isomers of $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$ drawn - 1 branched and 3 unbranched award two marks - any other combination award one mark
			ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-3-ol if structures not drawn
	Total	19	

Questio		er	Marks	Guidance
(b)	(5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
		Contains C=O bond because of absorption between 1700 and $1740 \mathrm{~cm}^{-1}$ (from the spectrum)		ALLOW contains a carbonyl group because of absorption within range $1640-1750 \mathrm{~cm}^{-1}$ OR contains an aldehyde, ketone or carboxylic acid because of absorption within range $1640-1750 \mathrm{~cm}^{-1} \checkmark$ Mention of only an aldehyde or a ketone is not sufficient it needs reference to the wavenumber LOOK FOR THIS MARK ON THE SPECTRUM
		does not contain an O-H bond \checkmark		ALLOW not a carboxylic acid \checkmark ALLOW does not have any other characteristic absorbance due to other functional groups
		(So was a) ketone OR aldehyde \checkmark		ALLOW (so was a) carbonyl compound ALLOW this mark if a structure of an aldehyde or a ketone is given even if the structure has an incorrect number of carbon atoms
		$M_{r}=86 \checkmark$		
		Correct structure \checkmark		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
				LOOK FOR AN ALDEHYDE or KETONE with FIVE carbon atoms OR a DIALDEHYDE, DIONE OR an OXOALDEHYDE with FOUR carbon atoms - a comprehensive list of correct structures is shown on page 34 IGNORE incorrect name
				DO NOT ALLOW COH for an aldehyde

Questi		er	Marks	Guidance
(b)	(i	Correct structure \checkmark Name of the structure drawn \checkmark butanoic acid OR 2-methylpropanoic acid	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) All bonds and all hydrogen atoms must be shown in a displayed formula within this question Name must correspond to the correct structure for two marks ALLOW butanoic acid or 2-methylpropanoic acid if the structure drawn is incorrect There is no ECF in this question ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$ ALLOW methylpropanoic acid

Quest	er	Marks	Guidance
(c)	$\begin{aligned} & \text { Use of propan-1-ol } \checkmark \\ & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ Correct formulae for the ester \checkmark Correctly balanced equation \checkmark Add $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR acid catalyst OR $\mathrm{H}^{+} \checkmark$	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW from the equation propanol $\mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ is not sufficient ALLOW molecular formula OR correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW propan-2-ol in the equation ALLOW conditions mark over the arrow in the equation
	Total	14	

Question			er	Marks	Guidance
4	(a)		Shape - tetrahedral \checkmark Bond angle 109.5°	2	ALLOW 109-110 ${ }^{\circ}$
	(b)	(Volatile OR non-toxic OR non-flammable OR easily vaporised	1	ALLOW not carcinogenic / not an irritant / not harmful / not hazardous IGNORE cheap / not dangerous / gas / low boiling point DO NOT ALLOW inflammable
		(ii)	(C-F or $\mathrm{C}-\mathrm{Cl}$) bonds need a large amount of energy to break	1	ALLOW (the C-F or C-Cl) bonds are strong / bonds have a large bond enthalpy ALLOW the molecule is not polar enough / non-polar molecule is not sufficient ALLOW the activation energy is too high DO NOT ALLOW dissolves IGNORE references to hydrogen bonding
	(c)		$\mathrm{CF}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CF}_{2} \mathrm{Cl}+\mathrm{Cl} \checkmark$ AND ANY TWO FROM Cl catalyses the decomposition of ozone $\begin{aligned} & \mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \checkmark \\ & \mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark \end{aligned}$	3	ALLOW $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ (breaks down to) produces chlorine atoms/radicals ALLOW equation with any CFC ALLOW ClO $+\mathrm{O}_{3} \rightarrow \mathrm{Cl}+2 \mathrm{O}_{2}$ ALLOW $\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} \mathrm{OR}_{3} \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$ for one mark if the two equations for the steps have not been given IGNORE other propagation equations

Questi	Answer	Marks	Guidance
(d)	Because (more) UV will reach the Earth's surface and risk of (skin) cancer increased/risk of cataracts/crop mutation increased \checkmark	1	DO NOT ALLOW global warming ALLOW protects from UV which causes skin cancer etc
(e)	Ideas related to uses CFCs are still entering the atmosphere (from disused items) OR CFCs are still used (for some purposes and by some countries) Ideas relating to lifetime within the atmosphere CFCs have a long lifetime in the atmosphere OR it takes a long time for CFCs to reach upper atmosphere OR CFCs are inert \checkmark	2	ALLOW 'stratosphere' for 'upper atmosphere' ALLOW CFCs are still entering the ozone layer
	Total	10	

Question		Expected Answers	Marks	Additional Guidance
(d)		Has O-H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) Forms hydrogen bonds with water (molecules)	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)		$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ 1 mark for each ester end of molecule	2	ALLOW displayed formula OR skeletal formula ALLOW sticks $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ shows one of the two ester groups and scores one mark
(f)	(i)		2	DO NOT ALLOW i.e. no E
	(ii)	$E / Z \checkmark$	1	ALLOW cis-trans IGNORE geometric
	(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ OR but-1-ene \checkmark	1	If but-1-ene given in part (i), ALLOW but-2-ene OR $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ i.e. ECF from $\mathrm{f}(\mathrm{i})$ DO NOT ALLOW methylpropene:

Questi	Expected Answers	Marks	Additional Guidance
From the evidence, candidates may have identified compound \mathbf{F} as propanone, propanal or propanoic acid - The mark scheme for $\mathbf{F}=$ propanone and propanal is shown in the 'Expected Answers' column. - The mark scheme for $\mathbf{F}=$ propanoic acid is shown in the 'Additional Guidance' column. If F is propanone or propanoic acid, then maximum score $=7$; but if F is propanal then maximum score $=6$			
($\mathbf{(g)}$	Mark scheme for F = propanone and propanal	7	Mark scheme for F = propanoic acid
	mass spec of E- Remember to check the spectrum Quality of Written Communication - mass spec gives M^{+}or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m / z (ALLOW m / e) value is $60 \checkmark$ $\mathrm{m} / \mathrm{z}=45$ indicates loss of CH_{3} OR $\mathrm{m} / \mathrm{z}=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$ OR CH $\mathrm{CH}_{2} \mathrm{OH}$ OR C2 $\mathrm{H}_{5} \mathrm{O} \checkmark$		mass spec of E - Remember to check the spectrum QWC - mass spec gives M^{+}or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m / z (OR m/e) value is $60 \checkmark$ $\mathrm{m} / \mathrm{z}=45$ indicates loss of CH_{3} OR $\mathrm{m} / \mathrm{z}=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$ OR CH $\mathrm{CH}_{2} \mathrm{OH}$ OR C2 $\mathrm{H}_{5} \mathrm{O} \checkmark$
	IR of \mathbf{F} - Remember to check the spectrum IR shows no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so no O-H bond OR no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so not a carboxylic acid \checkmark IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to a $\mathrm{C}=\mathrm{O}$ bond OR absorption at $1700 \mathrm{~cm}^{-1}$ indicates a ketone OR aldehyde present \checkmark		IR of F - Remember to check the spectrum IR shows (broad) absorption somewhere between 3500 and $2500 \mathrm{~cm}^{-1}$ suggests carboxylic acid OR O-H bond \checkmark IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ OR absorption at $1700 \mathrm{~cm}^{-1}$ indicates a carboxylic acid
	Identification and equation F is $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ OR propanone E is $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$ OR propan-2-ol \checkmark $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$		Identification and equation F is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR propanoic acid E is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR propan-1-ol \checkmark $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$
	If \mathbf{F} has been incorrectly identified as propanal, mark identification and equation as ECF, so max $=2$ ALLOW E is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \checkmark$ ALLOW: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$		
	Total	19	

